• Skip to primary navigation
  • Skip to content
  • Skip to primary sidebar

Tenzorial

Tutoriales de Matemáticas Universitarias

May 14, 2020

The Geometric Serie

The geometric series with ratio r \in \mathbb{R} and constant a is the following infinite sum:

    \[  ar^0+ar^1+ar^2+\cdots +ar^n+\cdots  \]

This series converges if and only if |r|<1, and its sum is:

    \[ \sum_{n=0}^{\infty}ar^n=\lim_{n\to\infty}a\frac{1-r^{n+1}}{1-r}=\frac{a}{1-r} \]

  • If r \ge 1, the series diverges.
  • If r<-1, the series oscillates between +\infty and -\infty.
  • If r=-1, the series oscillates between 0 and a.

Proof.

Let s_n be the partial sum of the series \sum_{n=0}^{\infty}ar^n

Thus,

    \[ s_n= \sum_{n=0}^{n}ar^n=a+ar+ar^2+\cdots+ar^n  \]

Multiplying s_n by r:

    \[   r\cdot s_n= ra+ar^2+ar^2+\cdots+ar^{n+1}   \]

We observe that r\cdot s_n contains all the terms of s_n except for the first term a and adds a new term, ar^{n+1}.

That is, r\cdot s_n= s_n -a+ar^{n+1}. We have obtained an equation for s_n, so solving for s_n:

    \[  a-ar^{n+1}=s_n-  r\cdot s_n  \Rightarrow a(1-r^{n+1})=s_n(1-r) \Rightarrow s_n=\frac{ a(1-r^{n+1}) }{ (1-r) }  \]

As long as r \neq 1, because otherwise, if r=1, then s_n would not be defined. We need a well-defined expression for s_n to determine the sum for all values of n, that is, \forall n\in \mathbb{N}.

We have successfully expressed the n terms of the sum in a general equation. This is very useful because the series is the limit of s_n as n\to\infty, and since we obtained an explicit expression for s_n, we just need to compute this limit.

    \[  \sum_{n=0}^{\infty}ar^n:=  \lim_{n\to\infty} s_n=a\lim_{n\to\infty}\frac{1-r^{n+1}}{1-r}=a\lim_{n\to\infty}\frac{\frac{1}{r}-\frac{r^{n+1}}{r}}{\frac{1-r}{r}}= a\lim_{n\to\infty}\frac{\frac{1}{r}-r^n}{\frac{1-r}{r}}=  \]

    \[=a\frac{\frac{1}{r}- \lim_{n\to\infty} r^n}{\frac{1-r}{r}} \stackrel{|r|<1}{=}  a\frac{\frac{1}{r}- 0}{\frac{1-r}{r}} =\frac{a}{1-r} \]

As you can see, we used the restriction |r|<1 because otherwise, \lim_{n\to\infty} r^n is not finite.

Reader Interactions

sidebar

sidebar-alt

2025Tenzorial © Made with by Oriol Prat